A study of ACO capabilities for solving the maximum clique problem

نویسندگان

  • Christine Solnon
  • Serge Fenet
چکیده

This paper investigates the capabilities of the Ant Colony Optimization (ACO) meta-heuristic for solving the maximum clique problem, the goal of which is to find a largest set of pairwise adjacent vertices in a graph. We propose and compare two different instantiations of a generic ACO algorithm for this problem. Basically, the generic ACO algorithm successively generates maximal cliques through the repeated addition of vertices into partial cliques, and uses “pheromone trails” as a greedy heuristic to choose, at each step, the next vertex to enter the clique. The two instantiations differ in the way pheromone trails are laid and exploited, i.e., on edges or on vertices of the graph. We illustrate the behavior of the two ACO instantiations on a representative benchmark instance and we study the impact of pheromone on the solution process. We consider two measures —the re-sampling and the dispersion ratio— for providing an insight into the performance at run time. We also study the benefit of integrating a local search procedure within the proposed ACO algorithm, and we show that this improves the solution process. Finally, we compare ACO performance with that of three other representative heuristic approaches, showing that the former obtains competitive results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating ACO capabilities for solving the Maximum Clique Problem

This paper investigates the capabilities of the Ant Colony Optimization (ACO) meta-heuristic for solving the maximum clique problem, the goal of which is to find a largest set of pairwise adjacent vertices in a graph. We propose two ACO algorithms for this problem. Basically, these algorithms successively generate maximal cliques through the repeated addition of vertices into partial cliques, a...

متن کامل

Searching for Maximum Cliques with Ant Colony Optimization

In this paper, we investigate the capabilities of Ant Colony Optimization (ACO) for solving the maximum clique problem. We describe Ant-Clique, an algorithm that successively generates maximal cliques through the repeated addition of vertices into partial cliques. ACO is used to choose, at each step, the vertex to add. We illustrate the behaviour of this algorithm on two representative benchmar...

متن کامل

An Ant System Algorithm for Maximum Clique

This paper presents a hybrid algorithm for solving the maximum clique problem. The algorithm is a blend of agent-based and local optimization techniques. Unlike typical Ant Colony Optimization (ACO) algorithms, agents in this algorithm are denied global knowledge. This restriction facilitates the expansion of this solution into a distributed algorithm capable of running across a network. Experi...

متن کامل

An ACO algorithm for one-dimensional cutting stock problem

The one-dimensional cutting stock problem, has so many applications in lots of industrial processes and during the past few years has attracted so many researchers’ attention all over the world. In this paper a meta-heuristic method based on ACO is presented to solve this problem. In this algorithm, based on designed probabilistic laws, artificial ants do select various cuts and then select the...

متن کامل

Solving the Vehicle Routing Problem with Simultaneous Pickup and Delivery by an Effective Ant Colony Optimization

One of the most important extensions of the capacitated vehicle routing problem (CVRP) is the vehicle routing problem with simultaneous pickup and delivery (VRPSPD) where customers require simultaneous delivery and pick-up service. In this paper, we propose an effective ant colony optimization (EACO) which includes insert, swap and 2-Opt moves for solving VRPSPD that is different with common an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Heuristics

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2006